Sectioned Convolution and SCDWT 分段摺積與分段摺積離散小波

沈汝川 N.C Shen

Advisor Prof:丁建均 J.J Ding

i. Abstract

ii. Sectioned Convolution

iii. Sectioned Convolution in DWT

iv. Efficiency Comparison

v. Future Work

Sectioned Convolution

how to perform the "convolution" !?

Frequency Response of Input Signal

Frequency Response of Convolution Result

X

Here is a problem....

How many points of FFT should be calculated !?

How to calculate the FFT !?

	Mults	Adds
Radix - 2	N/2 log ₂ N	N log ₂ N
Split - Radix	N/4 (log ₂ N+1)	3N/4 (log ₂ N+1/3)

what is the mean of "sectioned" !?

we split the input signal into section by section.

Overlap-Saved Method

what is the advantage of overlap-saved method !?

i. we do not have to wait until all of the signal has been received. ii. it does not increase the system complexity.

Sectioned Convolution

The complexity of sectioned convolution is

 $C = 2*\frac{N}{L - M + 12} \log_2 L$

L: sectioned length, M: filter length

The optimal sectioned length of sectioned convolution is

$$M = \frac{L + 1 + \log L}{1 + \log L} = 1 + \frac{L}{1 + \log_2 L}$$

L: sectioned length, M: filter length

what is the advantage of sectioned convolution !?

i. Saving Energy

ii. Saving Time

iii. Fixed Hardware Architecture

The Complexity of Sectioned Convolution is

$$C = 2*\frac{N}{L-M+1}\frac{L}{2}\log_2 L$$

Optimal Sectioned Length is

$$M = \frac{L + 1 + \log L}{1 + \log L} = 1 + \frac{L}{1 + \log_2 L}$$

No matter how long the input signal is, the points of FFT depends on the filter length.

i. Saving Energy

ii. Saving Time

iii.Better Hardware Architecture

I-Dimension DWT

 $k_{j} = k_{j-1} / 2 + M - 1$ j = 1, 2, 3, ...

 k_j is the input length in each level

I-Dimension DWT

The Complexity of I-Dimension DWT

I time k_j-point FFT for input signal + 2 times k_j-point FFT for filters + 2 times k_j-point FFT for DWT outputs

$$C_{uc} = 5 * \sum_{j=1}^{L} \frac{1}{2} k_j \log_2 k_j = 2.5 * \sum_{j=1}^{J} k_j \log_2 k_j$$

The Complexity of I-Dimension SCDWT

1/2 k_{j-1} times L-point FFT for input signal + 2 times L-point FFT for filters +2*1/2 k_{j-1} times L-point FFT for DWT outputs

$$C_{SC} = L \log_2 L + 3* \sum_{j=1}^{J} \left(\frac{\frac{1}{2}k_{j-1}}{L - M + 1} \frac{L}{2} \log_2 L \right)$$
$$= L \log_2 L + \frac{3}{2}* \left(\frac{L}{L - M + 1} \log_2 L \right) * \sum_{j=1}^{J} \frac{1}{2}k_{j-1}$$

I-Dimension EIDWT

The Complexity of I-Dimension EISCDWT

 $2*1/4 k_{j-1}$ times L'-point FFT for input signal + 4 times L'-point FFT for filters + $4*1/4 k_{j-1}$ times L'-point FFT for DWT outputs

$$C_{EISC} = 2*L' \log_2 L' + 6* \sum_{j=1}^{J} \left(\frac{\frac{1}{4}k_{j-1}}{L' - 0.5M + 1} \frac{L'}{2} \log_2 L' \right)$$
$$= 2*L' \log_2 L' + 3* \frac{L' \log_2 L'}{L' - 0.5M + 1} * \sum_{j=1}^{J} \frac{1}{4}k_{j-1}$$

one of the advantages of SCDWT is.....

Fixed Hardware Architecture

2-Dimension DWT

The Complexity of 2-Dimension DWT

$$C_{o} = \frac{1}{2} * \sum_{j=1}^{L} \left(\frac{1}{2} k_{j-1} + 1 \right) p_{j} \log_{2} p_{j} + 2 * \left(\frac{1}{2} p_{j} + 1 \right) k_{j} \log_{2} k_{j} + k_{j} p_{j} \log_{2} \frac{1}{4} k_{j} p_{j}$$

The Complexity of 2-Dimension SCDWT

$$C_{oSC} = L \log_2 L + \sum_{j=1}^{J} 1.5 * \frac{1}{2} k_{j-1} \frac{\frac{1}{2} p_{j-1}}{L - M + 1} L \log_2 L + 2 * \frac{1}{2} p_j \frac{\frac{1}{2} k_{j-1}}{L - M + 1} L \log_2 L$$

Input Length	DWT	SCDWT	EISCDWT
1024	36.5	19.1	14.2
512	73.0	28.4	21.2
256	146.0	47.I	35.I
128	292.I	84.5	63.0

* DWT level is fixed, Filter length is fixed

Input Lenght	DWT	SCDWT	EISCDWT
1024	-	52.32%	38.98%
512	_	38.96%	29.03%
256	-	32.28%	24.05%
128	-	28.94%	21.57%

* DWT level is fixed, Filter length is fixed

Filter Length	DWT	SCDWT	EISCDWT
8	73.0	28.4	21.2
16	75.3	35.0	28.9
32	80. I	41.9	36.1
64	90.0	50.4	44.6

* DWT level is fixed, Input length is fixed

Filter Length	DWT	SCDWT	EISCDWT
8	-	38.86%	29.03%
16	_	46.51%	38.36%
32	-	52.37%	45.14%
64	-	56.06%	49.56%

* DWT level is fixed, Input length is fixed

Conclusion and Future Work

No matter how long the input signal is, the points of FFT depends on the filter length.

Reference

[1] Gerard P. M. Egelmeers and Piet C. W. Sommen, "A new method for efficient convolution in frequency domain by nonuniform partitioning for adaptive filtering", IEEE Trans. Signal Process., Vol. 44, No.12, JUNE 1996

[2] Jung Kap Kuk and Nam Ik Cho, "Block convolution with arbitrary delays using fast Fourier transform", ISPACS 2005

[3] Guillermo García, "Optimal Filter Partition for Efficient Convolution with Short Input Output Delay", AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8

Thank you